
Jan 5, 2018 Python3_Intro_OOP.odp c 2018 1

CSCI120

Introduction to Computer Science I
using Python 3

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 2

 Introduction to
Object-Oriented Programming

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 3

Introduction to Object Oriented
Programming Videos

 Click here for the Introduction to Object Oriented Programming videos:

Part 1: https://youtu.be/4LNG_cGqQOw

Part 2: https://youtu.be/2PO2H02PVZQ

https://youtu.be/4LNG_cGqQOw
https://youtu.be/2PO2H02PVZQ

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 4

Introduction to Object-Oriented
Programming (OOP)

 Python is a structured programming language using
sequences (statements executed in sequence),
decisions (if) and looping (for and while) organized
to aid program understanding and modification.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 5

Introduction to Object-Oriented Programming
(OOP)

 Python supports multiple programming styles (also
known as paradigms), including imperative (issuing
command statements to tell the computer what to
do) and procedural (using programmer-defined
functions to organize and simplify programs).

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 6

Introduction to Object-Oriented Programming
(OOP)

 Procedural programming includes
the imperative and structured
programming paradigms.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 7

Introduction to Object-Oriented Programming
(OOP)

 In this Python course we started with
structured imperative programming and
went on to procedural programming when
we used programmer-defined functions...

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 8

Introduction to Object-Oriented Programming
(OOP)

 We are now about to learn how to use a very
important programming method - OOP

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 9

Introduction to Object-Oriented Programming
(OOP)

 The Object-Oriented
Programming (OOP) paradigm
was first introduced at MIT in the
1950s.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 10

Introduction to Object-Oriented Programming
(OOP)

 The idea of object-oriented programming gained
momentum in the 1970s, and in the early 1980s
Bjarne Stroustrup integrated object-oriented
programming into the C language. The resulting
language was called C++ and it became the first
object-oriented language to be widely used
commercially.

http://www.annedawson.net/conferences.html

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 11

Introduction to Object-Oriented Programming
(OOP)

 In the early 1990s a group at Sun Microsystems led
by James Gosling developed a simpler version of
C++ called Java that was developed into a
language for programming Internet applications.
The language gained widespread popularity as the
Internet boomed and was the language chosen by
Google to develop mobile Android apps.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 12

Object-Oriented Programming

 The Python language was first
developed in 1989 by
Guido van Rossum and by 1990 had the
capability for object-oriented
programming...

https://en.wikipedia.org/wiki/Guido_van_Rossum

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 13

What is OOP?
 What is an Object?

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 14

What is Object-Oriented Programming?

 To know what OOP is, you must first know
what an object is. . .

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 15

An object . . .

an object is an entity (a thing that exists)

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 16

Examples of objects

We have already been using many different
types of object on this course, for example
we have used objects of type:

int float

str bool

list file

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 17

How to make an int object

age = 10

print(type(age))

<class 'int'>

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 18

How to make a float object

temperature = 25.6

print(type(temperature))

<class 'float'>

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 19

How to make a str (string) object

myname = 'Anne Dawson'

print(type(myname))

<class 'str'>

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 20

How to make a bool object

passed = True

print(type(passed))

<class 'bool'>

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 21

How to make a list object

scores = [91,88,78,94,57,69]

print(type(scores))

<class 'list'>

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 22

A data type is a class!

Notice that all the built-in data types (int,
float, str, list etc) are known as classes...

A class has actions associated with it – for
example, with an int or float object you can
use + , -, * and /

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 23

A data type is a class!

The actions associated with objects of class
list, str and file have actions built
in to their methods...

mylist.sort()

mystring.capitalize()

myfile.close()

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 24

A class’s methods can change the
state of the object

For example, the data in a list are sorted by the
sort() method, the letters in a string are
converted to uppercase using the upper()
method.

mylist.sort()

mystring.upper()

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 25

In summary, class objects have...

their own name, (e.g. firstname), their
own data, (e.g. 'Anne') and their own
methods, (e.g. upper())

and every object belongs to a class...

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 26

An object is said to be an instance of a class

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 27

Python lets you create your own
classes...

Just like there are built-in functions like
print(), str() and functions you make
yourself (programmer-defined functions), their are
built-in classes and classes you can define
yourself...

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 28

Why would you want to create
your own classes?

As your programs get bigger, keeping track of
data gets more and more difficult...

Say you’re storing data on students on a Computer
Science course, you could use a list to store all the
pertinent data for name, course code, student
number, scores etc...

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 29

Why would you want to create
your own classes?

After using the program for a while you may
decide to store extra student data in your list for
date of birth for example...

You may need to amend your program on several
lines to make allowance for this change...

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 30

Why would you want to create
your own classes?

If you’re working with a team of
programmers and you hand your program
on to another programmer for maintenance,
it would be difficult for them to try to figure
out what data you’re storing and where it is
stored and manipulated.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 31

Creating your own Student class simplifies
your program...

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 32

Creating your own Student class
simplifies your program...

A Student class can be used to make Student
objects, each with its own set of data encapsulated
in the object itself, and with the ability to call any
of the methods specially written for that class.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 33

Objects

 Computer-programmed objects are similar
in many respects to everyday objects . . .

 such as cars, computers, cell phones and
music systems . . .

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 34

Each object is unique

 All cars have things in common: all cars have
wheels, an engine, a steering device, a gas pedal...

 Despite having things in common, every car in the
world is a unique object. Every car has its own
unique existence.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 35

 so, how are cars like
computer-programmed
objects?

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 36

 All cars have things in common . . .

 all cars have wheels, an engine, a steering
device, a gas pedal . . .

 Despite having things in common, every car
in the world is a unique object. Every car
has its own unique existence.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 37

Computer-Programmed Objects

data related to the object are stored inside the
object

the data are only changed by means of methods
which are available to the object

depending on the data values, an outside
method may be called to affect some other
object

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 38

Computer-Programmed Objects

data related to the object are stored inside the
object (the car’s speed, fuel)

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 39

Computer-Programmed Objects

data related to the object are stored inside the
object, and this is called “information hiding”
more commonly known as Encapsulation.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 40

Computer-Programmed Objects

 the data are only changed by means of
methods (functions) which are also
available to the object (a car’s speed is
altered by the accelerator method)

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 41

Computer-Programmed Objects

 the data are only changed by means of
functions which are available to the object
(these functions are known as methods and
alter the object’s private data)

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 42

Computer-Programmed Objects

depending on the data values, an outside
function may be called (when the seat belt is
not fastened, an alarm will sound)

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 43

Computer-Programmed Objects

depending on the data values, an outside
function may be called, in OOP this is called
“raising an event”

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 44

All objects belong to a class

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 45

All objects within a class have
the same methods

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 46

What is a class?

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 47

 If I ask you if you own a computer, you will
know, just by hearing the word “computer”
that I mean . . .

 . . . a machine with at least a
keyboard, screen, processor
and storage.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 48

 keyboard, screen, processor and storage. . .

 these are some of the things that all
computers have in common.

 This is my definition of a generic computer
and specifies for me the Class of
‘Computer’.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 49

 Try to think of a class as being a description of
an object, but not the object itself . . .

 . . . a bit like the difference between a

 data type, and the data value...

 . . . a bit like the difference between a

 chocolate cookie cutter and a chocolate cookie.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 50

 A class is a template or blueprint which can
generate an object when called upon to do so.

 All of the objects of a particular class have the
features specified by that class.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 51

You can create as many classes as you wish.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 52

You can create as many objects of a class as
you wish.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 53

 Because real-world objects can be mimicked
by computer-programmed objects . . .

 . . . we can create computer simulations
which can, for example, teach a student pilot
how to fly a 747 plane, but without any risk.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 54

 In fact, the very first OOP language was
called Simula and it was designed to
produce simulations

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 55

Objects belong to a Class

 Consider a class as a template or blueprint
of an object. The class contains all the
information required to generate the object.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 56

Objects have properties and functions

 Objects have properties (attributes)- like a
name, size, color, position.

 Objects also can perform functions
(methods) - like move, make noise, change
direction, speed up, slow down.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 57

Python 3 Classes
 You can instantiate an object of a class by simply

assigning the class name followed by any required
arguments in the parentheses...

 For instance, imagine we already have defined a
class named “Person”. Here is how to make two
Person objects:

 person1 = Person('Anne Dawson')

 person2 = Person('Tom Lee')

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 58

Using Objects
 Once we have created an object we can then

access the attributes of the object by a
notation such as:

 print(person1.name)

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 59

Using Objects

 Once we have declared an object we can
then access the methods of the object by a
notation such as, for example:

 person1.moveleft()

 person1.speak()

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 60

Classes

 The Python language comes with a set of
classes already written and ready for you to
use.

 You can use these classes, and you can
write your own classes from which you can
generate objects.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 61

 Just like there are predefined functions and
user-defined functions, there are predefined
classes and user-defined classes.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 62

 In OOP, programs are designed by
identifying classes of objects, and
by understanding the relationships
between the objects.

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 63

Introduction to Object Oriented
Programming Videos

 Click here for the Introduction to Object Oriented Programming videos:

Part 1: https://youtu.be/4LNG_cGqQOw

Part 2: https://youtu.be/2PO2H02PVZQ

https://youtu.be/4LNG_cGqQOw
https://youtu.be/2PO2H02PVZQ

Jan 5, 2018 Python3_Intro_OOP.odp c 2018 64

Last updated: Friday 5th January 2018, 7:10 PT, AD

	CSCI125 Introduction to Computer Science II using Java
	3 Programming Basics
	Slide 3
	Object-Oriented Programming
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	What is OOP? What is an Object?
	What is Object-Oriented Programming?
	An object . . .
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Objects
	Each object is unique
	Slide 35
	Slide 36
	Computer-Programmed Objects
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	All objects belong to a class
	All objects within a class have the same methods
	What is a class?
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Objects belong to a Class
	Objects have properties and functions
	Java Classes
	Using Objects
	Slide 59
	Classes
	Slide 61
	Slide 62
	Slide 63
	Slide 64

