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 Introduction to
Object-Oriented Programming
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Introduction to Object Oriented 
Programming Videos

   

   Click here for the Introduction to Object Oriented Programming videos:

Part 1: https://youtu.be/4LNG_cGqQOw

Part 2: https://youtu.be/2PO2H02PVZQ

https://youtu.be/4LNG_cGqQOw
https://youtu.be/2PO2H02PVZQ
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Introduction to Object-Oriented 
Programming (OOP)

   Python is a structured programming language using 
sequences (statements executed in sequence), 
decisions (if) and looping (for and while) organized 
to aid program understanding and modification. 
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Introduction to Object-Oriented Programming 
(OOP)

   Python supports multiple programming styles (also 
known as paradigms), including imperative (issuing 
command statements to tell the computer what to 
do) and procedural (using programmer-defined 
functions to organize and simplify programs). 
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Introduction to Object-Oriented Programming 
(OOP)

   Procedural programming includes 
the imperative and structured 
programming paradigms.
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Introduction to Object-Oriented Programming 
(OOP)

   In this Python course we started with 
structured imperative programming and 
went on to procedural programming when 
we used programmer-defined functions... 
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Introduction to Object-Oriented Programming 
(OOP)

   We are now about to learn how to use a very 
important  programming method - OOP
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Introduction to Object-Oriented Programming 
(OOP)

   The Object-Oriented 
Programming (OOP) paradigm 
was first introduced at MIT in the 
1950s.
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Introduction to Object-Oriented Programming 
(OOP)

   The idea of object-oriented programming gained 
momentum in the 1970s, and in the early 1980s 
Bjarne Stroustrup integrated object-oriented 
programming into the C language. The resulting 
language was called C++ and it became the first 
object-oriented language to be widely used 
commercially.

http://www.annedawson.net/conferences.html


Jan 5, 2018 Python3_Intro_OOP.odp   c   2018 11

Introduction to Object-Oriented Programming 
(OOP)

   In the early 1990s a group at Sun Microsystems led 
by James Gosling developed a simpler version of 
C++ called Java that was developed into a 
language for programming Internet applications. 
The language gained widespread popularity as the 
Internet boomed and was the language chosen by 
Google to develop mobile Android apps.
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Object-Oriented Programming
   

   The Python language was first 
developed in 1989 by 
Guido van Rossum and by 1990 had the 
capability for object-oriented 
programming...

https://en.wikipedia.org/wiki/Guido_van_Rossum
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What is OOP?
 What is an Object?
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What is Object-Oriented Programming?

   

   To know what OOP is, you must first know 
what an object is. . .
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An object . . .

an object is an entity (a thing that exists)
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Examples of objects

We have already been using many different 
types of object on this course, for example 
we have used objects of type:

int float

str bool

list file
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How to make an int object

age = 10

print(type(age))

<class 'int'>
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How to make a float object

temperature = 25.6

print(type(temperature))

<class 'float'>



Jan 5, 2018 Python3_Intro_OOP.odp   c   2018 19

How to make a str (string) object

myname = 'Anne Dawson'

print(type(myname))

<class 'str'>
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How to make a bool object

passed = True

print(type(passed))

<class 'bool'>
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How to make a list object

scores = [91,88,78,94,57,69]

print(type(scores))

<class 'list'>
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A data type is a class!

Notice that all the built-in data types (int, 
float, str, list etc) are known as classes...

A class has actions associated with it – for 
example, with an int or float object you can 
use  + ,  -,   *  and  /
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A data type is a class!

The actions associated with objects of class 
list,  str  and  file have actions built 
in to their methods...

mylist.sort()

mystring.capitalize()

myfile.close()
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A class’s methods can change the 
state of the object

For example, the data in a list are sorted by the 
sort() method, the letters in a string are 
converted to uppercase using the upper() 
method.

mylist.sort()

mystring.upper()
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In summary, class objects have...

their own name, (e.g. firstname), their 
own data, (e.g. 'Anne') and their own 
methods, (e.g. upper() )

and every object belongs to a class...
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An object is said to be an instance of a class
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Python lets you create your own 
classes...

Just like there are built-in functions like 
print(), str() and functions you make 
yourself (programmer-defined functions), their are 
built-in classes and classes you can define 
yourself...
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Why would you want to create 
your own classes?

As your programs get bigger, keeping track of 
data gets more and more difficult... 

Say you’re storing data on students on a Computer 
Science course, you could use a list to store all the 
pertinent data for name, course code, student 
number, scores etc...
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Why would you want to create 
your own classes?

After using the program for a while you may 
decide to store extra student data in your list for 
date of birth for example...

You may need to amend your program on several 
lines to make allowance for this change...
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Why would you want to create 
your own classes?

If you’re working with a team of 
programmers and you hand your program 
on to another programmer for maintenance, 
it would be difficult for them to try to figure 
out what data you’re storing and where it is 
stored and manipulated.
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Creating your own Student class simplifies 
your program...



Jan 5, 2018 Python3_Intro_OOP.odp   c   2018 32

Creating your own Student class 
simplifies your program...

A Student class can be used to make Student 
objects, each with its own set of data encapsulated 
in the object itself, and with the ability to call any 
of the methods specially written for that class.
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Objects

   Computer-programmed objects are similar 
in many respects to everyday objects . . .

   such as cars, computers, cell phones and 
music systems . . .
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Each object is unique

   All cars have things in common: all cars have 
wheels, an engine, a steering device, a gas pedal...

   Despite having things in common, every car in the 
world is a unique object.  Every car has its own 
unique existence.
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   so, how are cars like 
computer-programmed 
objects?
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   All cars have things in common . . .

   all cars have wheels, an engine, a steering 
device, a gas pedal . . .

   Despite having things in common, every car 
in the world is a unique object.  Every car 
has its own unique existence.
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Computer-Programmed Objects

data related to the object are stored inside the 
object

the data are only changed by means of methods 
which are available to the object

depending on the data values, an outside 
method may be called to affect some other 
object
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Computer-Programmed Objects

data related to the object are stored inside the 
object ( the car’s speed, fuel)
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Computer-Programmed Objects

data related to the object are stored inside the 
object, and this is called “information hiding” 
more commonly known as Encapsulation.
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Computer-Programmed Objects

   the data are only changed by means of 
methods (functions) which are also 
available to the object (a car’s speed is 
altered by the accelerator method)
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Computer-Programmed Objects

   the data are only changed by means of 
functions which are available to the object 
(these functions are known as methods and 
alter the object’s private data)
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Computer-Programmed Objects

depending on the data values, an outside 
function may be called (when the seat belt is 
not fastened, an alarm will sound)
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Computer-Programmed Objects

depending on the data values, an outside 
function may be called, in OOP this is called 
“raising an event”
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All objects belong to a class
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All objects within a class have 
the same methods
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What is a class?
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   If I ask you if you own a computer, you will 
know, just by hearing the word “computer” 
that I mean . . . 

   . . .  a machine with at least a 
keyboard, screen, processor 
and storage. 
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   keyboard, screen, processor and storage. . .

   these are some of the things that all 
computers have in common. 

   This is my definition of a generic computer 
and specifies for me the Class of 
‘Computer’. 
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   Try to think of a class as being a description of 
an object, but not the object itself . . .

   . . . a bit like the difference between a 

         data type, and the data value... 

   . . . a bit like the difference between a 

   chocolate cookie cutter and a chocolate cookie. 



Jan 5, 2018 Python3_Intro_OOP.odp   c   2018 50

   A class is a template or blueprint which can 
generate an object when called upon to do so.

 

    All of the objects of a particular class have the 
features specified by that class.
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You can create as many classes as you wish.
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You can create as many objects of a class as 
you wish.
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   Because real-world objects can be mimicked 
by computer-programmed objects . . .

   . . . we can create computer simulations 
which can, for example, teach a student pilot 
how to fly a 747 plane, but without any risk. 
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   In fact, the very first OOP language was 
called Simula and it was designed to 
produce simulations
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Objects belong to a Class

   Consider a class as a template or blueprint 
of an object.  The class contains all the 
information required to generate the object.
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Objects have properties and functions

   Objects have properties (attributes)- like a 
name, size, color, position.

   Objects also can perform functions 
(methods) - like move, make noise, change 
direction, speed up, slow down.
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Python 3 Classes
   You can instantiate an object of a class by simply 

assigning the class name followed by any required 
arguments in the parentheses...

   For instance, imagine we already have defined a 
class named “Person”.  Here is how to make two 
Person objects: 

    
 person1 = Person('Anne Dawson')

 person2 = Person('Tom Lee')
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Using Objects
   Once we have created an object we can then 

access the attributes of the object by a 
notation such as:

              print(person1.name)



Jan 5, 2018 Python3_Intro_OOP.odp   c   2018 59

Using Objects

   Once we have declared an object we can 
then access the methods of the object by a 
notation such as, for example:

      person1.moveleft() 

      person1.speak()              
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Classes

   The Python language comes with a set of 
classes already written and ready for you to 
use. 

   You can use these classes, and you can 
write your own classes from which you can 
generate objects.
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   Just like there are predefined functions and 
user-defined functions, there are predefined 
classes and user-defined classes.
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    In OOP, programs are designed by 
identifying classes of objects, and 
by understanding the relationships 
between the objects.
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Introduction to Object Oriented 
Programming Videos

   

   Click here for the Introduction to Object Oriented Programming videos:

Part 1: https://youtu.be/4LNG_cGqQOw

Part 2: https://youtu.be/2PO2H02PVZQ

https://youtu.be/4LNG_cGqQOw
https://youtu.be/2PO2H02PVZQ
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