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Object-Oriented Programming
Go to code...

http://www.annedawson.net/python3programs.html#N13
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   Before you can make an object in Python 3, 
you must first define the class... 
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class Person():
    ''' Instantiates a Person object with given name. '''
    def __init__(self, first_name, last_name):
        ''' Initializes private instance variables _firstname and _lastname.  '''
        self._firstname = first_name
        self._lastname = last_name

    def __str__(self):
        ''' Returns the state of the Person object. '''
        return self._firstname + " " + self._lastname

  Definition of the Person class:
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   After the keyword class, you type the name of the class 
to be created. Notice by convention, the first letter of a 
class name is uppercase (e.g. Person). 

   

   After the class name (Person) is (optionally) a set of 
parentheses()which optionally contain the class called 
object (from which all classes originate) – the object 
class is included implicitly if it is not explicitly typed 
within the parentheses.

 class Person(): 
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  The parentheses may contain the name of another class 
from which the current class inherits properties and 
methods.  Inheritance is explained later in this 
presentation. 

    Note that the parentheses are themselves optional if 
you don’t specify a class name -  but you must include 
the colon :

             class Person(): 
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  class Person: 

is equivalent to

class Person(): 

is equivalent to

class Person(object):
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class Person():
    ''' Instantiates a Person object with given name. '''
    def __init__(self, first_name, last_name):
         ''' Initializes private instance variables _firstname and _lastname.  '''

        self._firstname = first_name
        self._lastname = last_name

    def __str__(self):
        ''' Returns the state of the Person object. '''
        return self._firstname + " " + self._lastname

The highlighted text are docstrings for the class and methods

  Definition of the Person class:



Nov 9, 2018 Python3_Prog_OOP.odp   c   2018 9

 There is an important programming standard method of supplying 
documentation for functions, methods and classes. Programmers 
provide docstrings in their code. They are very easy to use and 
supply information that can be extracted by automated tools to 
get information about your functions, methods or classes. 

  The following is a quotation from python.org:

  "The docstring for a function should summarize its behavior 
and document its arguments, return value(s), side effects, 
exceptions raised, and restrictions on when it can be called 
(all if applicable)."
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 def average_quiz(student_name, quiz1, quiz2):
      ''' (str, int, int) -> float

      Returns the average quiz score for the student. '''

      pass 

    

    docstrings start with triple quotes (triple single or triple double) immediately after the 
function header, indented (tabbed) to the same level as the code in the function body.  In 
brackets it shows the parameter types followed by -> and the return type of the function.  
In the example function above, there are three parameters of type str, int, int and the 
function returns an object of type float.

    

    Often, when we a designing a program, we will provide a template for a function or class, 
just like the example above, which will be completed later.  We can place the keyword 
pass in the function or class body which is just a placeholder for the code which will be 
added later.   The pass is silently ignored when the program module runs...
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   To print the docstring of a class called Person from within the Python 3 code, 
you would type:

        print(Person.__doc__)      or

    print(Person.methodname.__doc__)

    
  Note: __doc__ is a special attribute available to all classes and stores the 

docstrings for the class and its methods.
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   To print the docstring of a class called Person from the 
command line in a Python shell window (after running the 
code containing the class), you would type:

        >>> help(Person)     

    
  Note: __doc__ is a special attribute available to all classes 

and stores the docstrings for the class and its methods.
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   Note: you can obtain help on built-in classes like 
int, str, float, etc in exactly the same way:

        >>> help(str)     
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class Person():
    ''' Instantiates a Person object with given name. '''
    def __init__(self, first_name, last_name):
        ''' Initializes private instance variables _firstname and _lastname.  '''

        self._firstname = first_name
        self._lastname = last_name

    def __str__(self):
        ''' Returns the state of the Person object. '''
        return self._firstname + " " + self._lastname

  Definition of the Person class:
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class Person():
    ''' Instantiates a Person object with given name. '''
    def __init__(self, first_name, last_name):
        ''' Initializes private instance variables _firstname and _lastname.  '''

        self._firstname = first_name
        self._lastname = last_name

   A class may define a special method named __init__ which does some 
initialization work and serves as a constructor for the class. Like other functions or 
methods __init__ can take any number of arguments. The __init__ method is 
run as soon as an object of a class is instantiated and class instantiation automatically 
invokes __init__() for the newly-created class instance.  This means that the 
programmer does not call the __init__ method directly!

 The __init__ method:
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class Person():
    ''' Instantiates a Person object with given name. '''
    def __init__(self, first_name, last_name):
         ''' Initializes private instance variables _firstname and _lastname.  '''
        self._firstname = first_name
        self._lastname = last_name

   

   The first parameter of the __init__ method is called self and stands for the 
name of the actual object being instantiated (created) by __init__.

 The __init__ method:

  In C++ and Java, self is called this.
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class Person():
    ''' Instantiates a Person object with given name. '''
    def __init__(self, first_name, last_name):
        ''' Initializes private instance variables _firstname and _lastname.  '''

        self._firstname = first_name
        self._lastname = last_name

   

   The __init__ method is used to provide initial values to 
the object’s attributes (in this case _firstname and 
_lastname) when the object is first created.

 The __init__ method:
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class Person():
    ''' Instantiates a Person object with given name. '''
    def __init__(self, first_name, last_name):
         ''' Initializes private instance variables _firstname and _lastname.  '''

        self._firstname = first_name
        self._lastname = last_name

    def __str__(self):

          ''' Returns the state of the Person object. '''
        return self._firstname + " " + self._lastname

person1 = Person("Anne","Dawson")
person2 = Person("Tom","Lee")
print(person1)
print(person2)

   Example Program: 13-01.py

Create two Person objects and call a method:

   Initial values of the attributes are passed 
to the __init__ method when the 
object is instantiated. Note, you do not 
pass anything for the self parameter, 
that is handled automatically. 
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All example programs can be found here:

http://www.annedawson.net/python3programs.html

http://www.annedawson.net/python3programs.html
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Object Oriented Programming 
Videos

   

   Click here for the Object Oriented Programming videos:

Part 1: https://youtu.be/edsORpbGz2U

Part 2: https://youtu.be/UyMoN5I2S20

https://youtu.be/edsORpbGz2U
https://youtu.be/UyMoN5I2S20
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  def __str__(self):
       ''' Returns the state of the Person object. '''
     return self._firstname + " " + self._lastname

   

   The __str__ method is used to print the state of an 
object,  i.e. the current values of the instance variables, 
in this case,  _firstname and _lastname.

 The __str__ method:
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  def __str__(self):
       ''' Returns the state of the Person object. '''
     return self._firstname + " " + self._lastname

   

   The  __str__ method, like the __init__ method is not called 
directly in a program, but is invoked automatically when the print() 
function is passed an object, e.g. 

    
 print(person1)

 The __str__ method:
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class Person():
    ''' Instantiates a Person object with given name. '''
    def __init__(self, first_name, last_name):
           ''' Initializes private instance variables _firstname and _lastname.  '''

        self._firstname = first_name
        self._lastname = last_name

    def __str__(self):
          ''' Returns the state of the Person object. '''
        return self._firstname + " " + self._lastname

person1 = Person("Anne","Dawson")
person2 = Person("Tom","Lee")
print(person1)
print(person2)

     Program output:
 >>> 
 Anne Dawson
 Tom Lee 
 >>>
   

   Example Program: 13-01.py

Create two Person objects and invoke the __str__ method:

Note, you do not pass 
anything for the self 
parameter, that is handled 
automatically. 
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    There are four very important features of 
OOP which all programmers must master...

     Encapsulation

     Abstraction

     Inheritance

     Polymorphism

     

 The four fundamental OOP concepts
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     Encapsulation

     Abstraction

     Inheritance

     Polymorphism
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    Encapsulation is a mechanism of wrapping 
the data (instance variables) and code 
acting on the data (methods) together into a 
single unit (a capsule). Encapsulation 
provides data hiding from outside of the 
class, the details of how data are stored and 
manipulated are hidden.

Encapsulation
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    Encapsulation involves hiding your instance 
variables. This means making them “private”. 
Python doesn’t actually provide the ability to 
make instance variables totally private, but by 
giving instance variables a name starting with 
an underscore ( _ ), this signals to the 
programmer that the variable should only be 
accessed by a method belonging to the same 
class.  

Encapsulation
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    The methods of the class are made public so that 
code from outside of the class can call (invoke) 
the method to view or change the value of an 
instance variable.

Encapsulation
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    def getFirstname(self):
       ''' Returns the instance variable _firstname. '''
     return self._firstname

  def getLastname(self):
       ''' Returns the instance variable _lastname. '''
     return self._lastname 
 

    Accessor methods are read-only – they only inspect the value of an 
instance variable – they do not change its value. See program 13-02.py

    
 print(person1.getFirstname())
 print(person1.getLastname())

Accessor methods view the value of 
an instance variable
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    def setFirstname(self,newFirstname):
       ''' Assign a value to the instance variable _firstname. '''
     self._firstname = newFirstname

  def setLastname(self,newLastname):
       ''' Assign a value to the instance variable _lastname. '''
     self._lastname = newLastname
 

   

   Mutator methods change the value of an instance variable. 
    See program 13-03.py
    
  person1.setFirstname("Annie")
  print(person1.getFirstname())

Mutator methods change the value of 
an instance variable
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    def reverseName(self):    
      '''Reverses the full name   '''

      return self._lastname + " " + self._firstname

   

    See program 13-04.py
    
  print(person1.reverseName())

Other methods used with objects
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     Encapsulation

     Abstraction

     Inheritance

     Polymorphism
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    Encapsulation ensures that the details of how data 
are stored and manipulated are hidden. 

   

    The user of a class’s methods only needs to know 
the required input to the method (the arguments) 
and the expected output from the method (returned 
value). How the method is actually implemented is 
irrelevant to the user of the method. 

Encapsulation leads to Abstraction...
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    The user of a class’s methods only needs to know 
the required input to the method (the arguments) 
and the expected output from the method (returned 
value). How the method is actually implemented is 
irrelevant. 

    Treating a method as a “black box” in this manner 
is called  abstraction.

Abstraction
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   Abstraction – the Black Box model...
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   Abstraction – the Black Box model

    

    How do we communicate to a programmer the  
behaviour (inputs and output) of a method?

    

    As long as a calling object knows what to 
send to the method, and what is expected to 
come out of the method, then that’s all 
that’s required to be able to use the method. 
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   The docstring explains the behaviour 
of a function or method (or class)

    

    def average_quiz(student_name, quiz1, quiz2):
      ''' (str, int, int) -> float

      Returns the average quiz score for the student'''

      pass
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     Encapsulation

     Abstraction

     Inheritance

     Polymorphism
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    Inheritance is a feature of object-oriented 
programming that allows us to define a 
new class (called a subclass, child class, or 
derived class) that is a modified version of 
an existing class (called the superclass, 
parent class or base class). 

Inheritance
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    The subclass inherits all of the properties 
(instance variables) and methods of the 
superclass in addition to adding some of its 
own variables and methods. 

Inheritance
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    class Student(Person):

Inheritance
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    We might, for example want to define a new 
class called Student which is a special case of 
a Person. The Student object needs all the 
attributes of the Person class (variable and 
methods) as well as some attributes of its own, 
like student number and GPA.

Inheritance
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    class Student(Person):

    '''Instantiates a Student object with given name. '''

    def __init__(self, first_name, last_name, student_number=0, G_P_A=0):

        '''Initializes variables _firstname, _lastname, _SN and _GPA. '''

        super().__init__(first_name, last_name) # import base's parameters

        '''Initializes instance variables _firstname and _lastname. '''

        self._SN = student_number

        self._GPA = G_P_A

Inheritance
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        See example program: 13-05.py

Inheritance
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     Encapsulation

     Abstraction

     Inheritance

     Polymorphism
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     A subclass can change the behaviour of an 
inherited method. If a method defined in the 
subclass (Student) has the same name as a 
method in its superclass (Person), then the 
child’s method will override the parent’s 
method.  
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     The feature of every OOP language that 
allows two classes to use the same method 
name but with different implementations is 
called polymorphism. The word 
polymorphism is derived from the Greek 
word meaning “many forms”.
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print(student1.reverseName()) 

# The reverseName method of the Student class

# overrides the same method of the Parent class.

# This is an example of polymorphism
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All example programs can be found here:

http://www.annedawson.net/python3programs.html

http://www.annedawson.net/python3programs.html
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Object Oriented Programming 
Videos

   

   Click here for the Object Oriented Programming videos:

Part 1: https://youtu.be/edsORpbGz2U

Part 2: https://youtu.be/UyMoN5I2S20
Click here for a basic into to OO Design using UML: 

http://www.annedawson.net/UML.html

Go to code...

https://youtu.be/edsORpbGz2U
https://youtu.be/UyMoN5I2S20
http://www.annedawson.net/UML.html
http://www.annedawson.net/python3programs.html#N13
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End of Python3_Prog_OOP.odp
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