
Nov 9, 2018 Python3_Prog_OOP.odp c 2018 1

CSCI120

Introduction to Computer Science I
using Python 3

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 2

Object-Oriented Programming
Go to code...

http://www.annedawson.net/python3programs.html#N13

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 3

 Before you can make an object in Python 3,
you must first define the class...

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 4

class Person():
 ''' Instantiates a Person object with given name. '''
 def __init__(self, first_name, last_name):
 ''' Initializes private instance variables _firstname and _lastname. '''
 self._firstname = first_name
 self._lastname = last_name

 def __str__(self):
 ''' Returns the state of the Person object. '''
 return self._firstname + " " + self._lastname

 Definition of the Person class:

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 5

 After the keyword class, you type the name of the class
to be created. Notice by convention, the first letter of a
class name is uppercase (e.g. Person).

 After the class name (Person) is (optionally) a set of
parentheses()which optionally contain the class called
object (from which all classes originate) – the object
class is included implicitly if it is not explicitly typed
within the parentheses.

 class Person():

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 6

 The parentheses may contain the name of another class
from which the current class inherits properties and
methods. Inheritance is explained later in this
presentation.

 Note that the parentheses are themselves optional if
you don’t specify a class name - but you must include
the colon :

 class Person():

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 7

 class Person:

is equivalent to

class Person():

is equivalent to

class Person(object):

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 8

class Person():
 ''' Instantiates a Person object with given name. '''
 def __init__(self, first_name, last_name):
 ''' Initializes private instance variables _firstname and _lastname. '''

 self._firstname = first_name
 self._lastname = last_name

 def __str__(self):
 ''' Returns the state of the Person object. '''
 return self._firstname + " " + self._lastname

The highlighted text are docstrings for the class and methods

 Definition of the Person class:

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 9

 There is an important programming standard method of supplying
documentation for functions, methods and classes. Programmers
provide docstrings in their code. They are very easy to use and
supply information that can be extracted by automated tools to
get information about your functions, methods or classes.

 The following is a quotation from python.org:

 "The docstring for a function should summarize its behavior
and document its arguments, return value(s), side effects,
exceptions raised, and restrictions on when it can be called
(all if applicable)."

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 10

 def average_quiz(student_name, quiz1, quiz2):
 ''' (str, int, int) -> float

 Returns the average quiz score for the student. '''

 pass

 docstrings start with triple quotes (triple single or triple double) immediately after the
function header, indented (tabbed) to the same level as the code in the function body. In
brackets it shows the parameter types followed by -> and the return type of the function.
In the example function above, there are three parameters of type str, int, int and the
function returns an object of type float.

 Often, when we a designing a program, we will provide a template for a function or class,
just like the example above, which will be completed later. We can place the keyword
pass in the function or class body which is just a placeholder for the code which will be
added later. The pass is silently ignored when the program module runs...

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 11

 To print the docstring of a class called Person from within the Python 3 code,
you would type:

 print(Person.__doc__) or

 print(Person.methodname.__doc__)

 Note: __doc__ is a special attribute available to all classes and stores the

docstrings for the class and its methods.

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 12

 To print the docstring of a class called Person from the
command line in a Python shell window (after running the
code containing the class), you would type:

 >>> help(Person)

 Note: __doc__ is a special attribute available to all classes

and stores the docstrings for the class and its methods.

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 13

 Note: you can obtain help on built-in classes like
int, str, float, etc in exactly the same way:

 >>> help(str)

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 14

class Person():
 ''' Instantiates a Person object with given name. '''
 def __init__(self, first_name, last_name):
 ''' Initializes private instance variables _firstname and _lastname. '''

 self._firstname = first_name
 self._lastname = last_name

 def __str__(self):
 ''' Returns the state of the Person object. '''
 return self._firstname + " " + self._lastname

 Definition of the Person class:

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 15

class Person():
 ''' Instantiates a Person object with given name. '''
 def __init__(self, first_name, last_name):
 ''' Initializes private instance variables _firstname and _lastname. '''

 self._firstname = first_name
 self._lastname = last_name

 A class may define a special method named __init__ which does some
initialization work and serves as a constructor for the class. Like other functions or
methods __init__ can take any number of arguments. The __init__ method is
run as soon as an object of a class is instantiated and class instantiation automatically
invokes __init__() for the newly-created class instance. This means that the
programmer does not call the __init__ method directly!

 The __init__ method:

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 16

class Person():
 ''' Instantiates a Person object with given name. '''
 def __init__(self, first_name, last_name):
 ''' Initializes private instance variables _firstname and _lastname. '''
 self._firstname = first_name
 self._lastname = last_name

 The first parameter of the __init__ method is called self and stands for the
name of the actual object being instantiated (created) by __init__.

 The __init__ method:

 In C++ and Java, self is called this.

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 17

class Person():
 ''' Instantiates a Person object with given name. '''
 def __init__(self, first_name, last_name):
 ''' Initializes private instance variables _firstname and _lastname. '''

 self._firstname = first_name
 self._lastname = last_name

 The __init__ method is used to provide initial values to
the object’s attributes (in this case _firstname and
_lastname) when the object is first created.

 The __init__ method:

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 18

class Person():
 ''' Instantiates a Person object with given name. '''
 def __init__(self, first_name, last_name):
 ''' Initializes private instance variables _firstname and _lastname. '''

 self._firstname = first_name
 self._lastname = last_name

 def __str__(self):

 ''' Returns the state of the Person object. '''
 return self._firstname + " " + self._lastname

person1 = Person("Anne","Dawson")
person2 = Person("Tom","Lee")
print(person1)
print(person2)

 Example Program: 13-01.py

Create two Person objects and call a method:

 Initial values of the attributes are passed
to the __init__ method when the
object is instantiated. Note, you do not
pass anything for the self parameter,
that is handled automatically.

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 19

All example programs can be found here:

http://www.annedawson.net/python3programs.html

http://www.annedawson.net/python3programs.html

Nov 9, 2018 Python3_Intro_OOP.odp c 201
8

20

Object Oriented Programming
Videos

 Click here for the Object Oriented Programming videos:

Part 1: https://youtu.be/edsORpbGz2U

Part 2: https://youtu.be/UyMoN5I2S20

https://youtu.be/edsORpbGz2U
https://youtu.be/UyMoN5I2S20

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 21

 def __str__(self):
 ''' Returns the state of the Person object. '''
 return self._firstname + " " + self._lastname

 The __str__ method is used to print the state of an
object, i.e. the current values of the instance variables,
in this case, _firstname and _lastname.

 The __str__ method:

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 22

 def __str__(self):
 ''' Returns the state of the Person object. '''
 return self._firstname + " " + self._lastname

 The __str__ method, like the __init__ method is not called
directly in a program, but is invoked automatically when the print()
function is passed an object, e.g.

 print(person1)

 The __str__ method:

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 23

class Person():
 ''' Instantiates a Person object with given name. '''
 def __init__(self, first_name, last_name):
 ''' Initializes private instance variables _firstname and _lastname. '''

 self._firstname = first_name
 self._lastname = last_name

 def __str__(self):
 ''' Returns the state of the Person object. '''
 return self._firstname + " " + self._lastname

person1 = Person("Anne","Dawson")
person2 = Person("Tom","Lee")
print(person1)
print(person2)

 Program output:
 >>>
 Anne Dawson
 Tom Lee
 >>>

 Example Program: 13-01.py

Create two Person objects and invoke the __str__ method:

Note, you do not pass
anything for the self
parameter, that is handled
automatically.

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 24

 There are four very important features of
OOP which all programmers must master...

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

 The four fundamental OOP concepts

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 25

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 26

 Encapsulation is a mechanism of wrapping
the data (instance variables) and code
acting on the data (methods) together into a
single unit (a capsule). Encapsulation
provides data hiding from outside of the
class, the details of how data are stored and
manipulated are hidden.

Encapsulation

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 27

 Encapsulation involves hiding your instance
variables. This means making them “private”.
Python doesn’t actually provide the ability to
make instance variables totally private, but by
giving instance variables a name starting with
an underscore (_), this signals to the
programmer that the variable should only be
accessed by a method belonging to the same
class.

Encapsulation

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 28

 The methods of the class are made public so that
code from outside of the class can call (invoke)
the method to view or change the value of an
instance variable.

Encapsulation

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 29

 def getFirstname(self):
 ''' Returns the instance variable _firstname. '''
 return self._firstname

 def getLastname(self):
 ''' Returns the instance variable _lastname. '''
 return self._lastname

 Accessor methods are read-only – they only inspect the value of an
instance variable – they do not change its value. See program 13-02.py

 print(person1.getFirstname())
 print(person1.getLastname())

Accessor methods view the value of
an instance variable

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 30

 def setFirstname(self,newFirstname):
 ''' Assign a value to the instance variable _firstname. '''
 self._firstname = newFirstname

 def setLastname(self,newLastname):
 ''' Assign a value to the instance variable _lastname. '''
 self._lastname = newLastname

 Mutator methods change the value of an instance variable.
 See program 13-03.py

 person1.setFirstname("Annie")
 print(person1.getFirstname())

Mutator methods change the value of
an instance variable

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 31

 def reverseName(self):
 '''Reverses the full name '''

 return self._lastname + " " + self._firstname

 See program 13-04.py

 print(person1.reverseName())

Other methods used with objects

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 32

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 33

 Encapsulation ensures that the details of how data
are stored and manipulated are hidden.

 The user of a class’s methods only needs to know
the required input to the method (the arguments)
and the expected output from the method (returned
value). How the method is actually implemented is
irrelevant to the user of the method.

Encapsulation leads to Abstraction...

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 34

 The user of a class’s methods only needs to know
the required input to the method (the arguments)
and the expected output from the method (returned
value). How the method is actually implemented is
irrelevant.

 Treating a method as a “black box” in this manner
is called abstraction.

Abstraction

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 35

 Abstraction – the Black Box model...

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 36

 Abstraction – the Black Box model

 How do we communicate to a programmer the
behaviour (inputs and output) of a method?

 As long as a calling object knows what to
send to the method, and what is expected to
come out of the method, then that’s all
that’s required to be able to use the method.

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 37

 The docstring explains the behaviour
of a function or method (or class)

 def average_quiz(student_name, quiz1, quiz2):
 ''' (str, int, int) -> float

 Returns the average quiz score for the student'''

 pass

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 38

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 39

 Inheritance is a feature of object-oriented
programming that allows us to define a
new class (called a subclass, child class, or
derived class) that is a modified version of
an existing class (called the superclass,
parent class or base class).

Inheritance

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 40

 The subclass inherits all of the properties
(instance variables) and methods of the
superclass in addition to adding some of its
own variables and methods.

Inheritance

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 41

 class Student(Person):

Inheritance

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 42

 We might, for example want to define a new
class called Student which is a special case of
a Person. The Student object needs all the
attributes of the Person class (variable and
methods) as well as some attributes of its own,
like student number and GPA.

Inheritance

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 43

 class Student(Person):

 '''Instantiates a Student object with given name. '''

 def __init__(self, first_name, last_name, student_number=0, G_P_A=0):

 '''Initializes variables _firstname, _lastname, _SN and _GPA. '''

 super().__init__(first_name, last_name) # import base's parameters

 '''Initializes instance variables _firstname and _lastname. '''

 self._SN = student_number

 self._GPA = G_P_A

Inheritance

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 44

 See example program: 13-05.py

Inheritance

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 45

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 46

 A subclass can change the behaviour of an
inherited method. If a method defined in the
subclass (Student) has the same name as a
method in its superclass (Person), then the
child’s method will override the parent’s
method.

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 47

 The feature of every OOP language that
allows two classes to use the same method
name but with different implementations is
called polymorphism. The word
polymorphism is derived from the Greek
word meaning “many forms”.

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 48

print(student1.reverseName())

The reverseName method of the Student class

overrides the same method of the Parent class.

This is an example of polymorphism

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 49

All example programs can be found here:

http://www.annedawson.net/python3programs.html

http://www.annedawson.net/python3programs.html

Nov 9, 2018 Python3_Intro_OOP.odp c 201
8

50

Object Oriented Programming
Videos

 Click here for the Object Oriented Programming videos:

Part 1: https://youtu.be/edsORpbGz2U

Part 2: https://youtu.be/UyMoN5I2S20
Click here for a basic into to OO Design using UML:

http://www.annedawson.net/UML.html

Go to code...

https://youtu.be/edsORpbGz2U
https://youtu.be/UyMoN5I2S20
http://www.annedawson.net/UML.html
http://www.annedawson.net/python3programs.html#N13

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 51

End of Python3_Prog_OOP.odp

Nov 9, 2018 Python3_Prog_OOP.odp c 2018 52

Last updated: Friday 9th November 2018, 12:15 PT, AD

	CSCI125 Introduction to Computer Science II using Java
	3 Programming Basics
	Object-Oriented Programming
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

